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Abstract. In the perturbative QCD approach single and double inclusive cross-sections for gluon produc-
tion off the nucleus are studied by the relevant reggeized gluon diagrams. Various terms corresponding to
emission of gluons from the triple pomeron vertex are found. Among them the term derived by Kovchegov
and Tuchin emerges as a result of the transition from the diffractive to effective high-energy vertex. How-
ever it does not exhaust all the vertex contributions to the inclusive cross-section. In the double inclusive
cross-section a contribution violating the naive AGK rules is found in which one gluon is emitted from
the vertex and the other from one of the two pomerons below the vertex. But then this contribution is
subdominant at high energies and taking it into account seems to be questionable.

1 Introduction

After the equation for the BFKL pomeron in the nucleus
(BK equation) had been written, analyzed analytically
and solved numerically [1,2], the corresponding inclusive
rate of gluon jet production was studied in [3] on the basis
of the AGK rules. The obtained cross-sections follow from
the cut upper pomeron in the fan diagrams for the whole
amplitude (Fig. 1a), the contribution from the cut lower
pomerons (Fig. 1b) being cancelled by the AGK rules. Ob-
viously the resulting cross-section is linear in the sum of
the pomeron fan diagrams Φ. Some time ago Kovchegov
and Tuchin derived the same inclusive rate of gluon jet
production in the color dipole formalism [4]. Their result
is different from [3] and corresponds to the substitution in
the expression obtained in [3]:

2Φ → 2Φ − Φ2, (1)

with a negative quadratic term in Φ. The new term cor-
responds to emission of gluons from the 3P vertex itself,
which is not prohibited by the AGK rules (Fig. 1c). This
gives us a motivation to reconsider the derivation of the
inclusive jet production rate in the fan diagram formalism,
which is basically much more transparent in searching for
real intermediate states observed as gluon jets, as com-
pared to the color dipole formalism.

Our approach is based on the direct inspection of
reggeized gluon diagrams. In the simplest non-trivial ex-
ample of two scattering centers they can be divided into
two contributions: the double pomeron exchange and the
triple pomeron interaction with a certain (“diffractive”)
3P vertex Z. The study of the latter contribution allows
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Fig. 1. Pomeron diagrams for the single inclusive cross-section
on two centers

one to localize real gluons inside the vertex Z, which can
be observed, and thus find the inclusive cross-section cor-
responding to the emission from the vertex Z. Next we
pass from the vertex Z to a different vertex V , which incor-
porates all the contributions at high energies and describes
the splitting of the pomeron in the non-linear BFKL equa-
tion. This transition generates a new term which also has
the structure of emission from the vertex. This term ex-
actly corresponds to the one introduced by Kovchegov and
Tuchin (the KT term).

As a result, our final inclusive cross-section is found to
be much richer than introduced in both our previous pa-
per and by Kovchegov and Tuchin. Apart from the terms
derived in these papers it contains several new ones, also
quadratic in Φ, and rather complicated in structure. The
numerical influence of these new terms will be studied in
following publications.

Note that the reggeized gluon diagrams with the ver-
tex Z satisfy the standard AGK rules for their different
discontinuities (“cuts”). This can be easily established fol-
lowing the original derivation of the AGK rules in [5]. In-
deed for the validity of the AGK rules it is fundamental
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that the coupling vertices are real and do not change when
cut in different ways. In the original derivation this prop-
erty was explained by the fact that the vertex Nν for the
coupling of a particle to ν pomerons could be presented
as an integral over the contributions from real intermedi-
ate states. So it was irrelevant whether these intermediate
particles were cut or not: they were always real. In the
diagrams with BFKL pomerons with the triple pomeron
vertex Z this property is also true. In fact, various parts
of the vertex Z consist of integration kernels K2→2, K2→3
and K2→4 introduced in [6] and connecting 2 gluons with
2, 3 and 4 gluons. All of them are real and contain only real
gluons as intermediate states. So they also do not change,
whether cut or not. The rest of the derivation of the AGK
rules is straightforward and just takes into account that
each pomeron may be cut to give 2P or not cut to give
−P when it lies on the left or right from the cut. This is
true irrespective of the nature of the pomeron, the old lo-
cal one or the BFKL one. Note that this logic works only
for the reggeized gluon diagrams as they follow from the
perturbation theory, that is, with the triple vertex Z. The
transition from Z to the high-energy vertex V introduces
virtual gluons into the vertex and thus makes it unfit for
the derivation of the AGK rules. This is why we start from
the diagrams with the vertex Z

In the final part of the paper we study the double in-
clusive cross-section on the same lines. Here again we find
various contributions corresponding to emission from the
vertex. Among them there is a contribution which vio-
lates the standard AGK rules. However this violation is
much weaker than claimed in [7], where also contributions
corresponding to emission from both the upper and lower
pomerons were found. Also terms which violate the AGK
rules are subdominant at high energies, so that their as-
sociation with the BK equation is questionable.

2 Emission from pomerons

In this section, also mainly introductory, we reproduce
formulas for the single and double inclusive cross-sections
which correspond to the emission of gluons from the
pomerons. This will serve to fix our normalization and
compare with additional contributions coming from emis-
sion from the 3P vertex.

The scattering amplitude on a nucleus at a given ra-
pidity Y and impact parameter b is represented as

A(Y, b) = 2is
∫

d2rρ(r)Φ(Y, b, r). (2)

Here ρ(r) is the color dipole density in the projectile and
Φ is the sum of all pomeron fan diagrams with the vertex
(1/2)V , where V is the effective high-energy 3P vertex
introduced in [8–10]. Symbolically

Φ(r) = P (r) − 1
2
G(r)V P 2 + ..., (3)

where P (r) is the pomeron in configuration space, G(r|r′)
is the corresponding BFKL Green function; G and V are

assumed to be operators acting on the pomeron coor-
dinates and rapidities. In the following we always sup-
press the fixed argument b and often the rapidities when
their values are clear. Emission from the pomeron corre-
sponds to “opening” the BFKL chain, which is described
by inserting the emission operator (see [11] and also Ap-
pendix A). We have

Vk(r) =
4αsNc

k2

←
∆ eikr

→
∆, (4)

that is, substituting

GY (r1|r2) →
∫

d2rGY−y(r1|r)Vk(r)Gy(r|r2), (5)

where we indicated the rapidities as subindices.
In this way we find the single inclusive cross-

section corresponding to the emission from the uppermost
pomeron in Φ (at fixed b):

J(y, k) ≡ (2π)3dσ

dyd2kd2b
(6)

= 2
∫

d2r1d2rρ(r1)GY−y(r1|r)Vk(r)Φy(r).

The AGK rules tell us that emission from lower pomerons
in Φ does not give any contribution. Note that the same
cancellation has been found in the dipole picture in [4].

The double inclusive cross-section has two contribu-
tions from pomerons. The first one is the double emission
from the uppermost pomeron (Fig. 2a)

J1(y1, k; y2, l))

= 2
∫

d2r1d2rd2r′ (7)
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Fig. 2. pomeron diagrams for the double inclusive cross-
section on two centers
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×ρ(r1)GY−y1(r1|r′)Vk(r′)Gy1−y2(r
′|r)Vl(r)Φy2(r).

The second contribution comes as emissions from the two
pomerons immediately below the vertex (Fig. 2b)

J2(y1, k; y2, l))

= −
∫ Y

y1

dy

∫
d2rd2r′

4∏
i=1

d2riρ(r1)GY−y(r1|r2)

×Z(r2|r3, r4)Gy−y1(r3|r)Vk(r)
×Φy1(r)Gy−y2(r4|r′)Vl(r′)Φy2(r

′), (8)

where Z(r2|r3, r4) is the 3P vertex in the coordinate space
for the forward direction.

3 Single inclusive cross-section:
emission from vertex Z

Contributions presented in the previous sections (“naive”)
were introduced and studied in [3]. However the analy-
sis of the amplitude with 4 reggeized gluons shows that
apart from real gluons in the pomeron chains there ap-
pear new real gluons in the process of changing the num-
ber of reggeized gluons or interactions between different
pomerons. So one may expect an additional contribution
to the inclusive cross-sections coming from the observa-
tion of real gluons inside the 3P vertex. To this end it is
sufficient to study the scattering on two centers (nucle-
ons), which corresponds to the second term in the series
(3). Then we can investigate emission from the vertex as
it follows from inspection of the amplitude for 4 reggeized
gluons obtained in the high-color limit in [12]. Our main
idea is that the results for the amplitude should be con-
sistent with the AGK rules, which tell that the relation
between the diffractively cut, double cut and single cut
amplitude is 1 : 2 : −4. As mentioned, the validity of
these rules is actually based only on the fact that the 3P
vertex is real and does not change for various cuttings,
which is true in our case. Knowing this and inspecting par-
ticular contributions we then can establish whether and
how the 3P vertex is cut and from this find the corre-
sponding contribution to the inclusive cross-section. Note
that the amplitude D4 for 4 reggeized gluons introduced
in [9] and studied in [12] and below is normalized to the
diffractive discontinuity for two identical centers. The am-
plitude corresponding to the scattering on two centers is
therefore obtained as −(1/2)D4. This factor −(1/2) ap-
pears as a coefficient before the vertex in the summation
of pomeron fans in (3) and has to be remembered when
translating our formulas from [12] into the ones for the
inclusive cross-sections.

3.1 Transitions 2 → 4 gluons

We suppress the pomerons connecting the amplitude D4
to the two scattering centers (“attached from below”). For
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Fig. 3. Transitions from 2 to 4 gluons

the transition from 2 to 4 gluons we have a single contri-
bution to the amplitude, which we then write as

D
(0)
2→4 = −g4NcW (1, 23, 4|1′, 4′) ⊗ D(1′). (9)

We use the notation from [12]. Momenta are denoted by
the number of the gluons which carry them: 1 ≡ k1 etc.
The notation 12 means the sum of momenta 1 and 2. The
function W is the momentum part of the Bartels kernel
K2→3:

W (k1, k2, k3|q1, q3)

=
(k1 + k2 + k3)2

q2
1q2

3
+

k2
2

(k1 − q1)2(k3 − q3)2

− (k1 + k2)2

q2
1(k3 − q3)2

− (k2 + k3)2

q2
3(k1 − q1)2

. (10)

It conserves the momentum so that k1 +k2 +k3 = q1 +q3.
It is assumed that the pairs of final gluons 12 and 34 are
colorless and are to be coupled to two final pomerons.
D(1) is the initial pomeron (amputated). The symbol ⊗
in this section means integration over 1′ with the weight
(2π)−3. Diagrammatically the contribution (9) is shown in
Fig. 3. One has to understand that in the whole amplitude
the gluon pairs 12 and 34 are to be represented by the
standard BFKL ladders.

Now we pass to the determination of the inclusive
cross-section corresponding to a real gluon inside the 3P
vertex.

According to the AGK rules, with the adopted nor-
malization, the diffractive contribution is 1/2 of (9). From
Fig. 3 we observe that in the diffractive contribution the
central real gluon is cut in W and the two side ones are
uncut. To find the inclusive cross-section corresponding
to observation of the cut central gluon we have to fix its
momentum. Therefore the contribution to the inclusive
cross-section to observe a gluon of momentum k coming
from the vertex will be

Idif
2→4 = −g4NcW (1, 23, 4|12k, 34 − k)D(12k). (11)

Of course there will be no integration, so that ⊗ passes
into a simple product. The factor (2π)−3 is assumed to be
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included in I. We have also taken into account factor 2 in
(2).

The double cut contribution is twice (9) according to
the AGK rules. Since both lower pomerons are now cut,
we conclude from Fig. 3 that gluons on both sides in W
are cut and the central gluon is uncut. To find the corre-
sponding inclusive one from the vertex we have to fix the
momentum of one of the side gluons. The two possibilities
give the same contribution so that finally

Idouble
2→4 = −4g4NcW (1, 23, 4|1k, 4 − k)D(1k). (12)

The single cut contributions give (9) multiplied by
(−2). In them only one of the side gluons in W is cut,
the other and the central left uncut. So to find the inclu-
sive cross-section we have just to fix the momentum of the
cut gluon. We find

Isingle
2→4 = 4g4NcW (1, 23, 4|1k, 4 − k)D(1k). (13)

As a result, the double and single cut contributions
cancel and we are left with the diffractive contribution
(11), which gives the total inclusive cross-section from the
vertex from transitions 2 → 4

3.2 Transitions 3 → 4 gluons

According to [12] the contribution from transitions 3 → 4
gluons to the amplitude is given by

D
(0)
3→4 = g3

√
2Nc

{
W (1, 2, 3|1′, 3′) ⊗ D

(134)
3 (1′, 3′, 4)

−W (1, 2, 4|1′, 4′) ⊗ D
(134)
3 (1′, 3, 4′)

+W (2, 3, 4|2′, 4′) ⊗ D
(124)
3 (1, 2′, 4′)

− W (1, 3, 4|1′, 4′) ⊗ D
(124)
3 (1′, 2, 4′)

}
, (14)

where

D
(123)
3 (1, 2, 3) = g

√
Nc

8
(D(2) − D(1) − D(3)) . (15)

Let us consider the first term in the sum (14) as an ex-
ample. It is illustrated in Fig. 4. Again one has to imagine
that the pairs of legs 12 and 34 actually are the beginning
of two BFKL ladders corresponding to lower pomerons.

We again start with the diffractive cut. Obviously it
corresponds to the cut right gluon in W , while the left
one stays uncut. The contribution to the inclusive cross-
section from the vertex will be

Idif,1
3→4 = g3

√
2NcW (1, 2, 3|12k, 3 − k)

⊗D
(134)
3 (12k, 3 − k, 4). (16)

In the double cut amplitude it is the left gluon in W which
will be cut, while the right one will be uncut. Taking into
account the factor 2 from the AGK rules we find the con-
tribution from the first term in (14):

Idouble,1
3→4 = 2g3

√
2NcW (1, 2, 3|1k, 23 − k)

�
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Fig. 4. Transitions from 3 to 4 gluons

⊗D
(134)
3 (1k, 23 − k, 4). (17)

Finally in the once cut amplitude the contribution will
come only from the half of all terms, namely from those
in which the lower pomeron 12 is cut. If the pomeron 34 is
cut there is no real gluon in the vertex. So the total factor
is (−2) and the observed gluon from the vertex is the left
one, while the right one is unobserved. The contribution
to the inclusive cross-section from the vertex will be

Isingle,1
3→4 = −2g3

√
2NcW (1, 2, 3|1k, 23 − k)

⊗D
(134)
3 (1k, 23 − k, 4). (18)

As for transitions 2 → 4 the contributions from the
double cut and single cut amplitudes cancel and we are
left with only the diffractive contribution (16). The same
result holds for the rest of the terms in (14).

3.3 Transitions 4 → 4 gluons

The contribution to the amplitude from transitions 4 → 4
gluons is given by [12]

D
(0)
4→4 = g2 (U23 + U14 − U13 − U24)

⊗
(
D

(1234)
4 − D

(2134)
4

)
, (19)

where

D
(1234)
4 (1, 2, 3, 4) =

1
4
g2Nc (D(1) + D(4) − D(14)) (20)

and

D
(2134)
4 (1, 2, 3, 4) (21)

=
1
4
g2Nc (D(2) + D(3) − D(12) − D(13)) .

Here U23 = U(2, 3|2′, 3′) is the BFKL interaction acting
between the gluons 2 and 3:

U(k1, k2|q1, q2) =
k2
1q

2
2 + k2

2q
2
1

q2
1q2

2(k1 − q1)2
− (k1 + k2)2

q2
1q2

2
, (22)
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Fig. 5. Transitions from 4 to 4 gluons

with k1 + k2 = q1 + q2.
As an example we consider the term with U23 illus-

trated in Fig. 5. Obviously both single and double cuts
through the lower pomerons do not pass through the in-
teraction U23, which acts between the two pomerons. So
the only contribution will come from the diffractive cut.
Fixing the observed gluon momentum we find the contri-
bution to the inclusive cross-section from the vertex as

I
(23)
4→4 = I

dif,(23)
4→4

= g2U(2, 3|2k, 3 − k) (23)

×
(
D

(1234)
4 (1, 2k, 3 − k, 4) − D

(2134)
4 (1, 2k, 3 − k, 4)

)
.

The total contribution is the sum of this term with the
ones coming from the interactions U14, U13 and U24 (with
their respective signs) which are treated in a similar man-
ner.

3.4 Total contribution

We have found that the whole contribution I(Z) to the
inclusive cross-section from the vertex Z only comes from
the diffractive cut. Integration over the observed gluon
momentum obviously gives the modulus of the total am-
plitude ∫

d2k

(2π)3
I(Z)(k) = Z ⊗ D. (24)

To this expression one should attach two lower pomerons,
which has been always assumed implicitly. Then (24)
means that the integrated contribution of the emission
from the vertex Z is equal to the total high-mass diffrac-
tive cross-section.

Summing (11), 4 terms of the type (16) and 4 terms of
the type (23), using the symmetry in the gluons 12 and 34
and attaching two lower forward pomeron fans Φ(1) and
Φ(3) with 12 = 34 = 0 we find

I(Z)(k) = g2Nc

∫
d2k1

(2π)2
d2k3

(2π)2
Φ(1)Φ(3)

× {W (1, 2, 3|12k, 3 − k) (D(3 − k) − D(4))

+W (2, 3, 4|2k, 34 − k) (D(2k) − D(1))
−W (1, 23, 4|12k, 34 − k)D(12k) (25)
+ U(2, 3|2k, 3 − k) (D(13 − k) − D(14))} .

Here we have put P → (1/g2)Φ for the lower pomerons
and D → g2D for the upper one in accordance with their
definitions in [2]. More explicit expressions for the inclu-
sive cross-section I(Z)(k) can be found in the Appendix B.

4 Transformation to the vertex V

The total inclusive cross-section for gluon production on
two centers is the sum of (25) and a contribution from the
cut upper pomeron in the triple pomeron diagram with
vertex Z:

Itot(k) = I(Z)(k) + J (Z)(k), (26)

where we denoted J (Z) the standard contribution (6) ob-
tained by cutting the upper pomeron for two scattering
centers with vertex Z:

J (Z)(k) = −g2Nc

2π

∫
d2k1

(2π)2
d2k3

(2π)2
d2k′1
(2π)2

d2k5

(2π)2

× P (1)P (3)Z(1,−1, 3,−3|1′,−1′)

× G̃(1′|5)U(5|5k)D(5k). (27)

Here G̃(1′|5) is the forward BFKL Green function, ampu-
tated from the left (that is, without the left factor k′1

−4),
satisfying the equation

(j − 1 − 2ω(1) − U)G̃(1|1′) = (2π)2δ2(1 − 1′), (28)

where ω is the gluon trajectory. We denote

B(1, 2, 3, 4|5)
= G4(1, 2, 3, 4|1′, 2′, 3′, 4′) ⊗ Z(1′, 2′, 3′, 4′|5′,−5′)

× ⊗ G̃(5′|5), (29)

where ⊗ means integration over all repeated
momenta with weight (2π)−2, 1234 = 0, and
G4(1, 2, 3, 4|1′, 2′, 3′, 4′) = G(1, 2|1′, 2′)G(3, 4|3′, 4′).
In fact also 12 = 1′2′ = 34 = 3′4′ = 0; however, this will
be irrelevant for the time being. Obviously B satisfies the
equation

S4B = Z ⊗ G̃ + g2Nc(U12 + U34)B. (30)

This is actually the same equation as in our derivation of
the vertex V in [10], with the difference that D is sub-
stituted by G̃. The latter is also a solution of the BFKL
equation although with a different inhomogeneous term.
So we can repeat our whole derivation of the vertex V in
[10] substituting in D40

D20(q) → G̃(0)(q|k5) = (2π)2δ2(q − k5) (31)

and separating from B a “reggeized term”

BR = D40

(
D20(q) → G̃(q|5)

)
. (32)
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As a result, we shall get

B = BR

+ G4(1, 2, 3, 4|1′, 2′, 3′, 4′)
⊗ {V (1′, 2′, 3′, 4′|5′,−5′) ⊗ G2(5′, 5)

− D40

(
D20(q) → G̃(0)(q|5)

)}
. (33)

Putting into (27) these three terms will give three contri-
butions to the inclusive cross-section, which have trans-
parent interpretations. The reggeized term BR attached
to the cut interaction U(5|5k) and the upper amputated
pomeron D(5k) will give the contribution corresponding
to “opening” the reggeized term for the amplitude DR

4 .
This term is subdominant at high rapidities and not taken
into account in the non-linear BFKL equation. The sec-
ond term will generate the standard contribution from the
triple P interaction with vertex V following from the AGK
rules and coming from the upper pomeron. The third term
in (33) is independent of rapidity and putting it into (27)
will give a contribution I1(k) which has the meaning of
emission from the vertex.

Explicitly we have

D40

(
D20(q) → G̃(0)(q|5)

)
(34)

=
1
2
g2(2π)2

{
4∑

i=1

δ2(i − 5) −
4∑

i=2

δ2(1i − 5)

}
.

From the first term in the first sum we shall have a con-
tribution

I
(1)
1 (k) =

1
2
g2(2π)2

g2Nc

2π

∫
d2k1

(2π)2
d2k3

(2π)2
d2k5

(2π)2

×P (1)P (3)U(5|5k)D(5k)δ2(1 − 5). (35)

Integration over k3 puts the gluons in the pomeron P (3)
at the same point in the configuration space and makes
the total contribution vanish. The same argument is true
for all terms in the first sum.

The first term in the second sum gives

I
(2)
1 (k) = −1

2
g2(2π)2

g2Nc

2π

∫
d2k1

(2π)2
d2k3

(2π)2
d2k5

(2π)2

×P (1)P (3)U(5|5k)D(5k)δ2(12 − 5). (36)

However, 12 = 0, so that now integrations over k1 and k3
will put gluons in both the lower pomerons at the same
point in configuration space. So this term also vanishes.

We are left with the two last terms in the second sum.
They give equal contributions and their sum is

I
(3)
1 (k)

= −g2(2π)2
g2Nc

2π

∫
d2k1

(2π)2
d2k3

(2π)2
d2k5

(2π)2

×P (1)P (3)U(5|5k)D(5k)δ2(13 − 5). (37)

Using the explicit expression

U(5, 6) = 2
k2
5

k2
6(k5 − k6)2

(38)
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Fig. 6. The Kovchegov–Tuchin term for the inclusive cross-
section

and passing to the non-amputated upper pomeron

D(6) = k4
6P (6) (39)

we rewrite the contribution (37) in the final form

I
(3)
1 (k)

= −g2 g2Nc

π
1
k2

∫
d2k1

(2π)2
d2k3

(2π)2
(40)

×P (1)P (3)(k1 + k3)2(k1 + k3 + k)2P (13k).

Passing to the configuration space one can see that this
contribution is exactly the additional term derived by
Kovchegov and Tuchin in the dipole formalism in [4].
Putting P → g2P for the upper pomeron and P →
(1/g2)Φ for the lower ones we find

I
(3)
1 (k) ≡ I(KT)(k)

= −4αsNc

k2

∫
d2reikr∆P (r)∆Φ2(r). (41)

Thus the Kovchegov–Tuchin (KT) term is just the differ-
ence between the standard AGK contributions obtained
by cutting the upper pomeron in the triple P diagram
with vertices Z and V . The interpretation of this term in
terms of reggeized gluon diagrams is illustrated in Fig. 6.

However from our derivation it follows that the total
contribution from the vertex V has to additionally include
the part I(Z) which appears in the direct calculation with
vertex Z:

I(V ) = I(KT) + I(Z). (42)

5 Double inclusive cross-section

Now we pass to the double inclusive cross-section I(k, l)
for the production of two gluon jets with rapidities and
momenta y1, k and y2, l with y1 � 1, y2 � 1 and
Y � y1 � y2 where Y is the overall rapidity. In the
following we shall often suppress the rapidities y1 and



M.A. Braun: On inclusive gluon jet production off the nucleus in perturbative QCD 175

y2 associating them with the given observed gluon mo-
menta. By the AGK rules and without emission from the
vertex the double inclusive cross-section is described by
the first three diagrams shown in Fig. 2. Allowed by the
AGK rules, emission from the vertex adds to them a new
diagram, Fig. 2d. Note that in contrast to the single in-
clusive cross-section different contributions to the double
inclusive cross-section behave differently at large rapidi-
ties. Two emissions from the upper pomeron (Fig. 2a)
and one from the upper pomeron and the other from
the vertex (Fig. 2d) generate cross-sections which grow
as exp ∆(Y + y2), whereas emissions from the double
pomeron exchange (Fig. 2c) or the two lower pomerons
(Fig. 2b) give contributions which grow as exp 2∆Y and
clearly dominate. So taking into account the former con-
tributions (or any with a similar high-rapidity behavior)
in the summation of pomeron fans is not justified, as this
summation is standardly performed in the high-rapidity
limit. This problem is not academic, since as we shall see,
the analysis of the reggeized gluon diagrams will produce
new contributions and among them a contribution corre-
sponding to the diagram Fig. 2e prohibited by the AGK
rules and with the emission from the vertex different from
Fig. 2d. However, all of them are subdominant relative to
the emission from the double pomeron exchange or the
two lower pomerons (Fig. 2a,c) and strictly speaking have
to be neglected.

5.1 Emission from the vertex

As with the single inclusive cross-section we begin with
the study of emission from the vertex itself. Since the two
observed gluons are assumed to have widely different ra-
pidities, only one of them may be emitted from the ver-
tex. Obviously there may be two possibilities. Either it
is the slowest gluon l which is emitted from the vertex,
the quicker one k emitted from the upper pomeron, or the
quicker gluon k is emitted from the vertex and the slow l
from one of the lower pomerons. We start from the first
possibility.

If the gluon l is emitted from the vertex and the gluon
k is emitted from the upper pomeron (Fig. 2d) then the
corresponding cross-section can be found in a trivial man-
ner. In fact, in the diagrams for the single inclusive cross-
section the upper pomeron is always cut. So to find the
cross-section corresponding to Fig. 2d all we have to do
is to take the single inclusive emission from the vertex
I(Z)(l), (25), and “open” the upper pomeron to describe
emission of the gluon k from it, that is, substitute the
upper pomeron D(q) according to (5), which in the mo-
mentun space means

D(q) → G(q, q1) ⊗ Vk(q1, q2)
D(q2)

q4
2

, (43)

where

Vk(q1, q2) =
4αcNc

K2 q2
1q2

2(2π)2δ2(q1 − q2 − k). (44)

For the diagram Fig. 2d this means inserting into the ver-
tex the same emission operator which acts in the single
inclusive cross-section corresponding to Fig. 1c.

Now we consider the second possibility when one (the
quickest) gluon is emitted from the vertex and the other
from the lower pomeron (Fig. 2e). This time we have to
return to the diagrams for reggeized gluon propagation
shown in Figs. 3–5. In contrast to the single inclusive cross-
section studied in Sect. 2, now we must take into account
that at least one of the pomerons attached to gluons 12
or 34 (that from which the second gluon is emitted) has
to be cut.

As before we start from transitions from 2 to 4 gluons.
Obviously the diffractive cut passing through the center
does not give any contribution, since none of the lower
pomerons is cut. The double cut, passing through the two
pomerons, will give two contributions, corresponding to
the observation of the left real gluon in the vertex

−2g4Nc (P (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4)
+ P (1, 2)P (3′, 4′)VlG(3′, 4′|3, 4))

⊗W (1, 23, 4|1k, 234 − k)D(1k) (45)

or the right real gluon in the vertex

−2g4Nc (P (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4)
+ P (1, 2)P (3′, 4′)VlG(3′, 4′|3, 4))

⊗W (1, 23, 4|123k, 4 − k)D(4 − k). (46)

In the single cut contributions the second gluon can only
be emitted from the cut lower pomeron, the left one:

4g4NcP (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4)
⊗W (1, 23, 4|1k, 234 − k)D(1k), (47)

or the right one:

4g4NcP (1, 2)P (3′, 4′)VlG(3′, 4′|3.4)
⊗W (1, 23, 4|123k, 4 − k)D(4 − k). (48)

Due to symmetry under the interchange of gluons (12) ↔
(34) contributions from the double and single cuts cancel.
So transitions from 2 to 4 gluons give no contribution to
the inclusive cross-section corresponding to the diagram
Fig. 2e.

The same is true for transitions from 4 to 4 gluons of
the type shown in Fig. 5. The real gluon inside the ver-
tex corresponds to only the diffractive cut when the lower
pomerons are both uncut.

We are left with transitions from 3 to 4 gluons, see
(14), the first term of which is illustrated in Fig. 4. Let
us start from this term. Again the diffractive cut gives no
contribution. From the double cut we have a contribution
corresponding to the observed left real gluon in the vertex:

2g3
√

2Nc (P (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4)
+ P (1, 2)P (3′, 4′)VlG(3′, 4′|3.4)) (49)

⊗W (1, 2, 3|1k, 23 − k)D(134)
3 (1k, 23 − k, 4).
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The single cut contribution comes only from the cut
pomeron 12:

−4g3
√

2NcP (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4) (50)

⊗W (1, 2, 3|1k, 23 − k)D(134)
3 (1k, 23 − k, 4).

In the sum we get

2g3
√

2Nc (P (1, 2)P (3′, 4′)VlG(3′, 4′|3, 4)
− P (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4)) (51)

⊗W (1, 2, 3|1k, 23 − k)D(134)
3 (1k, 23 − k, 4).

Due to asymmetry between the contributions from the
same 12 or different 34 lower pomerons they do not can-
cel and generate a non-zero inclusive cross-section, corre-
sponding to Fig. 2e. Below we list the analogous contribu-
tions from the rest of the terms in (14). The second term
gives

2g3
√

2Nc (P (3, 4)P (1′, 2′)VlG(1′, 2′|1, 2)
− P (3′, 4′)VlG(3′, 4′|3, 4)P (1, 2)) (52)

⊗W (1, 2, 4|1k, 24 − k)D(134)
3 (1k, 3, 24 − k).

The third term gives

2g3
√

2Nc (P (3, 4)P (1′, 2′)VlG(1′, 2′|1, 2)
− P (3′, 4′)VlG(3′, 4′|3, 4)P (1, 2)) (53)

⊗W (2, 3, 4|23k, 4 − k)D(124)
3 (1, 23k, 4 − k)

and the last one

2g3
√

2Nc (P (1, 2)P (3′, 4′)VlG(3′, 4′|3, 4)
− P (1′, 2′)VlG(1′, 2′|1, 2)P (3, 4)) (54)

⊗W (1, 3, 4|13k, 4 − k)D(124)
3 (13k, 2, 4 − k).

Summing all the contributions and using the symme-
tries under 1 ↔ 2 and 3 ↔ 4 we finally get the inclusive
cross-section

I
(Z)
1 (k, l)

= 2g4NcP (3, 4)P (1′, 2′)VlG(1′, 2′|1, 2)
× {W (1, 2, 3|1k, 23 − k) (D(4) − D(23 − k))

−W (1, 3, 4|13k, 4 − k) (D(13k) − D(2))}
+ (12 ↔ 34) . (55)

Explicitly this cross-section has the form (passing to Φs)

I
(Z)
1 (k, l)

= 2g2Nc

∫
d2k1

(2π)2
d2k′1
(2π)2

d2k3

(2π)2

× Φ(3)Φ(1′ + l)VlG(1′|1)

×
{(

k2
1

k2(k1 + k)2

+
k2
3

(k1 + k)2(k1 + k − k3)2

− (k1 − k3)2

(k1 + k)2(k1 + k − k3)2

)
× (

k4
3P (k3) − (k1 + k − k3)4P (k1 + k − k3)

)
+ (1 ↔ 3)}
+{12 ↔ 34}. (56)

Thus we get a non-trivial inclusive cross-section corre-
sponding to the diagram Fig. 2e which is naively prohib-
ited by the AGK rules. Note that the emission from the
vertex operator is found to be different from that in the
diagram Fig. 2d allowed by the AGK rules.

5.2 Transition to the vertex V

As with the single inclusive cross-section we have to pass
from the vertex Z to the vertex V in the triple pomeron
diagrams Fig. 2a,b and also take into account the double
pomeron exchange diagram Fig. 2c.

We begin with the diagram in Fig. 2a with both emis-
sions from the upper pomeron. Transition to the vertex
V here is achieved in full similarity with the single in-
clusive cross-section. The only difference in the derivation
is that the uppermost pomeron has to be substituted ac-
cording to (5). As a result we get an additional contribu-
tion for the emission from the vertex and upper pomeron
(Fig. 2d), the new emission from the vertex described by
the Kovchegov–Tuchin operator:

I(KT)(k, l) = −g2Nc

π
1
l2

∫
d2k1

(2π)2
d2k3

(2π)2
d2k5

(2π)2

×Φ(1)Φ(3)(k1 + k3)2(k1 + k3 + l)2

×G(13l|5)VkP (5 + k). (57)

Now we pass to the diagram with two emissions from
the lower pomerons, Fig. 2b. Here we use the fact that the
gluon k has its rapidity y1 larger than the rapidity y2 of
the gluon l. Accordingly we use the identity

Gy−y2(3
′′, 4′′|3, 4)

= Gy1−y2(3
′′, 4′′|3′, 4′) ⊗ Gy−y1(3

′, 4′|3, 4) (58)

and present the part below the vertex Z at rapidity y in
the form

Py1(1
′, 2′)VkGy−y1(1

′, 2′|1, 2)
× Py2(3

′′, 4′′)VlGy1−y2(3
′′, 4′′|3′, 4′)

⊗Gy−y1(3
′, 4′|3, 4)

= Py1(1
′, 2′)VkPy2(3

′′, 4′′)VlGy1−y2(3
′′, 4′′|3′, 4′)

⊗G4,y−y1(1
′, 2′, 3′, 4′|1, 2, 3, 4), (59)

where G4 is the Green function for the 4 gluons. After
integration with the vertex and upper part we represent
the diagram Fig. 2b as

Py1(1
′, 2′)VkPy2(3

′′, 4′′)VlGy1−y2(3
′′, 4′′|3′, 4′)

⊗G4,y−y1(1
′, 2′, 3′, 4′|1, 2, 3, 4)

⊗Z(1, 2, 3, 4|1̄, 4̄)D(1̄). (60)



M.A. Braun: On inclusive gluon jet production off the nucleus in perturbative QCD 177

Now we recall the basic relation between the vertices
Z and V :

D4 = G4 ⊗D
(0)
4 +G4 ⊗Z ⊗D = D

(R)
4 +G4 ⊗V ⊗D, (61)

from which we find

G4 ⊗ Z ⊗ D = D
(R)
4 + G4 ⊗ V ⊗ D − G4 ⊗ D

(0)
4 . (62)

Putting this into (60) we find three terms for the double
inclusive cross-section. The second one is just the desired
structure with two emissions from the lower pomerons and
vertex V :

Py1(1
′, 2′)VkGy−y1(1

′2′|1, 2)
×Py2(3

′, 4′)VlGy−y2(3
′, 4′|3, 4)

⊗V (1, 2, 3, 4|1̄, 4̄) ⊗ D(1̄). (63)

The third one corresponds to the emission from the double
pomeron exchange with the minus sign:

− Py1(1
′, 2′)VkPy2(3

′′, 4′′)VlGy1−y2(3
′′, 4′′|3′, 4′) (64)

⊗G4,Y−y(1′, 2′, 3′, 4′|1, 2, 3, 4) ⊗ D
(0)
4 (1, 2, 3, 4).

This contribution will cancel the same contribution from
the diagram Fig. 2c.

Finally from the first term we shall have a new con-
tribution to the emission from the vertex and a lower
pomeron (Fig. 2e) with the structure

Py1(1, 2)VkPy2(3
′, 4′)VlGy1−y2(3

′, 4′|3, 4)

⊗D
(R)
Y−y1

(1, 2, 3, 4). (65)

This contribution is subdomimant at high energies, since
the term D(R) in (62) is obviously subdominant relative
to the other two. So strictly speaking we have to drop it
just as we have done with a similar term for the single
inclusive cross-section (cf. (33)). However, it grows faster
than the contributions coming from the emissions from
the upper pomeron or the upper pomeron and the vertex
(Fig. 2a,d). So we study this term in some more detail, in
particular because it has certain peculiarities.

Using the explicit expression of D(R) [9,12], (65) gen-
erates the cross-section

I2(k, l)

= −1
2
g2Py1(1, 2)VkPy2(3

′, 4′)VlGy1−y2(3
′, 4′|3, 4)

⊗
(

4∑
i=1

DY−y1(i) −
4∑

i=2

DY−y1(1i)

)
. (66)

All terms depending on the sum 34 give zero, since
the Green function G(3′, 4′|3, 4) vanishes when the two
reggeons are located at the same point in the configura-
tion space. Using the symmetry in 1 ↔ 2 and 3 ↔ 4 we
get

I2(k, l) = −g2Py1(1, 2)VkPy2(3
′, 4′)VlGy1−y2(3

′, 4′|3, 4)
⊗ (DY−y1(3) − DY−y1(13)) . (67)

The first term gives (passing to Φs)

I
(1)
2 (k, l) = −g2Nc

πk2

∫
d2k1

(2π)2
Φy1(1)

k2
1

(k1 − k)2

×
∫

d2k′3
(2π)2

d2k3

(2π)2
(68)

×Φy2(3
′)VlGy1−y2(3

′|3)k4
3PY−y1(3).

The integral over k3 and k′3 is just 1/2 of the single
inclusive cross-section from a single pomeron exchange
J(l). The first factor corresponds to the lower pomeron
“opened” at the top and integrated over the topmost glu-
ons. Such a contribution does not look very natural (see
Fig. 7a). Moreover the integral over k1 obviously diverges
at k1 = k. Of course this divergence is in fact spurious
and arises only because we have neglected the momentum
transfer in the target, taking it at t = 0. Its appearance is
a signal that this approximation is too crude: in fact the
first factor behaves as −(1/y1) log t as t → 0. Integration
with the nuclear wave function will convert this behavior
into a factor proportional to (1/y1) log A.
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Fig. 7. Illustration of terms I
(1)
2 and

I
(2)
2 ; see (68) and (69)
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The second term in (67) gives a non-factorizable inte-
gral:

I
(2)
2 (k, l) =

g2Nc

πk2

∫
d2k1

(2π)2
d2k′3
(2π)2

d2k3

(2π)2

×Φy1(1)Φy2(3
′)VlGy1−y2(3

′|3)
k2
1(k1 + k3)4

(k1 − k)2

×PY−y1(13). (69)

Its structure is shown in Fig. 7b. It also diverges at k1 = k
and so leads to terms proportional to (1/y1) log A.

6 Conclusions

We have studied the single and double inclusive cross-
sections by inspection of the reggeized gluon diagrams in
the Lipatov–Bartels formalism, as an alternative to the
color dipole approach employed in [4,7]. As a result we
have found the cross-sections to be much more compli-
cated than obtained both in the latter approach and by
the naive application of the AGK rules in [3]. Various
terms corresponding to the emission of gluon from the
triple pomeron vertex have been discovered. Among them
the term derived in [4], which in their approach comes by
the change from the quark dipole to the gluon dipole, in
our treatment emerges as a result of transition from the
original diffractive vertex Z to the effective vertex V used
in the BK equation. However it does not exhaust all the
contributions to the emission from the vertex, which are
numerous and rather complicated in structure. In corre-
spondence with the AGK rules we have no contribution
from emissions below the splitting vertex. This cancella-
tion was also found in the dipole picture in [4]. In the new
contribution from the vertex we also discovered certain
cancellations, which leave essentially only the diffractive
part. This cancellation does not seem to have a counter-
part in the dipole formalism, where all these new terms
seem to be absent and in fact emission from the splitting
point does not seem to appear at all.

In the double inclusive cross-section we have found
terms which correspond to the emission of one gluon from
the vertex and the other from one of the two pomerons im-
mediately below the vertex. Such terms are not expected
by the AGK rules provided the cut vertex does not depend
on the way it is cut, which is usually assumed to be valid.
Our results show that the latter assumption is not so. So
while strictly speaking one cannot state that the AGK
rules are violated, their naive application does not seem
to hold. Still it is to be noted that we have not found con-
tributions corresponding to emission from pomerons both
above and below the vertex, as in [7], which would indeed
strongly violate the AGK rules. Also all found terms in
the double inclusive cross-section with a somewhat un-
expected structure are subdominant at high energies and
their inclusion seems to be questionable.

We have to acknowledge that our derivation has been
rather heuristic. It has been based on the study of
reggeized gluon diagrams for the triple discontinuity of

the 4-gluon amplitude. Analysis of the gluon content of
the triple gluon vertex has been performed using its dia-
grammatic representation, by the visual inspection of the
way the real gluons are cut in the vertex. This ingredi-
ent of our approach has not been rigorously proven, that
is, interpreted in terms of the relevant production ampli-
tudes. So one has to take our derivation with a certain
dose of caution. The complicated character of the contri-
butions to emission from the vertex does not correspond to
our expectations for something so fundamental. However
it does not seem that one can avoid certain extra terms,
apart from the easily located KT term, for emission from
the vertex, since already in the high-mass diffraction such
terms obviously appear [9].
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tels, Yu. Kovchegov and G.P. Vacca for numerous helpful dis-
cussions and critical comments. This work has been supported
by the NATO grant PST.CLG. 980287.

Appendix A:
Inclusive cross-section
from a single pomeron exchange

In this appendix we derive the inclusive cross-section for
single pomeron exchange with emphasis on the numeri-
cal coefficient, important for the comparison with other
contributions. We follow the normalizations of Lipatov in
[13]. Our basic equations will be the unitarity relation for
the reggeized gluon ladder together with the form of the
multi-Regge amplitude for production of n real gluons. As
compared to [13] we make the following changes. We lift
the integration over the last reggeized gluon attached to
the target (momentum qn+1) and consider the amplitude
at fixed qn+1. Then the number of momentum integrations
n will match the number of produced real gluons in the
intermediate states. This allows one to include each fac-
tor 1/(4π) in the phase volume into the gluon interaction
substituting in it g2 → g2/(2π) and absorbing 1/2 into
the sum over polarizations:

(1/2)
∑

µ

Cµ(q1, q2)Cµ(q1, q2) = U(q1, q2). (A.1)

With these assumptions, the forward unitarity relation be-
comes

Im An =
π
s
g2
(

g2Nc

2π

)n

×
∫ n∏

i=1

d2qi

(2π)2

∫ n+1∏
i=1

dsi,i−1δ

(
n+1∏
i=1

si,i−1 − s

n∏
i=1

p2
i

)

×|Bn(qi)|2, (A.2)

where the intermediate real gluon have momenta pi =
qi − qi+1, i = 1, n and the production amplitude Bn has
the multi-Regge form:

Bn = 2s
s

ωn+1
n+1,n

tn+1

n∏
i=1

sωi
i,i−1

ti
(eiC(qi+1, qi)) . (A.3)
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Here ti = −q2
i , ei are the gluon polarization vectors, ωi =

ω(ti) and ω(t) is the gluon Regge trajectory which can
be found in [13] together with the explicit expression for
vectors C. In (A.2) and (A.3) we suppressed all the color
indices, summation over which is done in the standard
way.

Our aim is to factorize the unitarity relation into the
product of two independent ones for parts of the ladder
above and below some particular real gluon with momen-
tum pm. To this end we first factorize the production am-
plitudes introducing

B
(1)
m−1 = 2s1

sωm
m,m−1

tm

m−1∏
i=1

sωi
i,i−1

ti
(eiC(qi+1, qi)) (A.4)

and

B
(2)
n−m = 2s1

s
ωn+1
n+1,n

tn+1

n∏
i=m+1

sωi
i,i−1

ti
(eiC(qi+1, qi)) , (A.5)

with s1s2 = sp2
m. Obviously

Bn =
s

2s1s2
B

(1)
m−1B

(2)
n−m (emC(qm+1, qm)) . (A.6)

Integration over the intermediate momenta of the
square moduli of the amplitudes B

(1)
m−1 and B(2) gener-

ates unitarity relations for the corresponding elastic am-
plitudes:

Im A
(1)
m−1 =

π
s1

g2
(

g2Nc

2π

)m−1

×
∫ m−1∏

i=1

d2qi

(2π)2

∫ m∏
i=1

dsi,i−1δ

(
m∏

i=1

si,i−1 − s1

m−1∏
i=1

p2
i

)

×|B(1)
m−1(qi)|2 (A.7)

and

Im A
(2)
n−m =

π
s

(
g2Nc

2π

)n−m

×
∫ n∏

i=m+2

d2qi

(2π)2

∫ n+1∏
i=m+1

dsi,i−1 (A.8)

×δ

(
n+1∏

i=m+1

si,i−1 − s2

n∏
i=m+1

p2
i

)
|B(2)

n−m(qi)|2.

Now we turn to the overall unitarity relation (A.2). We
represent it in the following form:

δ

(
n+1∏
i=1

si,i−1 − s

n∏
i=1

p2
i

)
=
∫

ds1ds2δ(s1s2 − sp2
m) (A.9)

× δ

(
m∏

i=1

si,i−1 − s1

m−1∏
i=1

p2
i

)

× δ

(
n+1∏

i=m+1

si,i−1 − s2

n∏
i=m+1

p2
i

)
.

Then using the unitarity relations (A.7) and (A.8) and
summing over the polarizations of the distinguished gluon
pm we obtain

Im An =
g2Nc

8π2

∫
ds1ds2

s

s1s2

×
∫

d2qm

(2π)2
d2qm+1

(2π)2
δ(s1s2 − sp2

m)Im A
(1)
m−1Im A

(2)
n−m

×U(qm+1, qm). (A.10)

In the Lipatov normalization

Im A = 2sP. (A.11)

So relation (A.10) in terms of pomerons acquires the form

Pn =
g2Nc

4π2

∫
ds1ds2

∫
d2qm

(2π)2
d2qm+1

(2π)2
δ(s1s2 − sp2

m)

×Pm−1(qm)Pn−m(qm+1)U(qm+1, qm). (A.12)

The inclusive cross-section results by summing over all
numbers of gluons in the two pomerons on the right-hand
side of (A.12), fixing momentum pm = k and doubling the
contribution according to (A.11)

dσ = 4αsNc

∫
ds1ds2

d2k

(2π)3

∫
d2q

(2π)2
δ(s1s2 − sk2)

×P (q)P (q − k)U(q − k, q). (A.13)

Thus the final recipe for the inclusive cross-section is
to introduce the operator

Vk = 2αsNcU(q′, q)δ2(q − q′ − k), (A.14)

multiply the result by 2, and the resulting cross-section is

I(k) =
(2π)3dσ

dyd2k
. (A.15)

Appendix B:
Explicit expressions for I(Z)

To find the explicit expressions for the inclusive cross-
section I(Z)(k) given by (25) we shall use the following
relations between the pomerons P (k), pomerons in the
nucleus Φ(k), the function φ(k) which satisfies the non-
linear BFKL equation and the gluon density defined as
h(k) = k2∇2

kφ(k):

g2P (k) → Φ(k) = −2π∇2
kφ(k)

= (2π)2δ2(k) − 2π
h(k)
k2 , (B.1)

P (k) = −2π
h0(k)

k2 . (B.2)

We shall also use Φ(r = 0) = P (r = 0) = 0 in the config-
uration space and the relation

∆ ln r = 2πδ2(r). (B.3)
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Armed with these relations we study the separate
terms in (25). The first one (with D(3 − k)) has the form

I
(Z)
1 = g2Nc

×
∫

d2k1

(2π)2
d2k3

(2π)2
Φ(k1)Φ(k3)P (k3 − k)(k3 − k)4

×
{

k2
1

k2(k1 − k)2
+

k2
3

k2(k3 − k)2

− (k1 − k3)2

(k1 − k)2(k3 − k)2

}
. (B.4)

The bracket vanishes if k1 = 0 or k3 = 0. So in principle
we can substitute Φs and P by gluon densities neglecting
the δ term in (B.1). However for this particular term this
is not convenient. The second term in the brackets gives
zero, since integration over k1 then leads to Φ(r1 = 0). The
other two terms can be rearranged to exhibit the absence
of an infrared divergence to obtain

I
(Z)
1 = g2Nc

×
∫

d2k1

(2π)2
d2k3

(2π)2
Φ(k1)Φ(k3)P (k3 − k)(k3 − k)2

×
{

k2
1 − k2

k2(k1 − k)2
+ 2

(k1 − k)(k3 − k)
(k1 − k)2(k3 − k)2

}
. (B.5)

Each of the two terms obviously factorizes in two integrals
over k1 and k3.

The first term in the bracket contains two integrals:∫
d2k1

(2π)2
Φ(k1)

k2
1 − k2

k2(k1 − k)2
=

2
k2 k∇kφ(k) =

2
k

φ′(k)

(B.6)
and ∫

d2k3

(2π)2
Φ(k3)P (k3 − k)(k3 − k)4

=
∫

d2reikrΦ(r)∇4P (r) ≡ X1(k). (B.7)

In the second term the integral over k1 can be repre-
sented by

∇k

∫
d2k1

2π
∇2

1φ(k1) ln(k1 − k) = ∇kφ(k), (B.8)

where we have integrated by parts and used the relation
(B.3). The integral over k3 can be written as

−1
4

∫
d2k3

(2π)2
Φ(k3)P (k3 − k)∇k(k3 − k)4

=
1
4

∫
d2rr sin krΦ(r)∇4P (r) ≡ kX2(k). (B.9)

Our final expression for this part is

I
(Z)
1 (k) = 2g2Ncφ

′(k)
(

1
k

X1(k) + kX2(k)
)

. (B.10)

The second term (with D(4)) differs from the first by
the sign and the change (k3 − k)4P (k3 − k) → k4

3P (k3).
Obviously the factorization is preserved with the integrals
over k3 changed. Now∫

d2k3

(2π)2
Φ(k3)P (k3)k4

3 =
∫

d2k3h(k3)h0(k3)

=
∫

d2rΦ(r)∇4P (r)

≡ X3 (B.11)

(it does not depend on k) and we have the second integral

−∇k

∫
d2k3

(2π)2
k4
3Φ(k3)P (k3) ln(k3 − k) (B.12)

= −∇k

∫
d2k3h(k3)h0(k3) ln(k3 − k) ≡ kX4(k).

So we find

I
(Z)
2 (k) = −2g2Ncφ

′(k)
(

1
k

X3 + kX4(k)
)

. (B.13)

The third and fourth terms (with D(2k) and D(1))
differ from the first two ones by the interchange of the two
lower pomerons and the sign of k. Since the cross-section
is obviously independent of this sign and symmetric in the
lower pomerons, the third and fourth terms give the same
contribution as the first two, so that (B.10) and (B.13)
have to be doubled.

The fifth term (with D(12k)) is

I
(Z)
5 (k) = g2Nck

4P (k)
∫

d2k1

(2π)2
d2k3

(2π)2
Φ(1)Φ(3)

×
{

k2
1 − k2

k2(k1 − k)2
+

k2
3 − k2

k2(k3 − k)2

+ 2
(k1 − k)(k3 − k)
(k1 − k)2(k3 − k)2

}
, (B.14)

where we transformed the initial W (1, 23, 4|12k, 34 − 5)
similarly to the transition from (B.4) to (B.5). The first
two terms in the bracket do not give any contribution, so
that we are left with the last one, which obviously factor-
izes in two identical integrals; see (B.8). So we find

I
(Z)
5 (k) = 2g2Nck

4P (k) (φ′(k))2 . (B.15)

Finally we have contributions from the sixth and sev-
enth terms. They do not factorize and we just rewrite their
sum in terms of h and h0:

I
(Z)
6+7(k) = −g2Nc

2π

∫
d2k1

k2
1

d2k3

k2
3

h(k1)h(k3)

× (
(k1 + k3 − k)2h0(k1 + k3 − k)

−(k1 − k3)2h0(k1 − k3)
)

×
{

k2
1 − k2

k2(k1 − k)2
+

k2
3 − k2

k2(k3 − k)2
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+2
(k1 − k)(k3 − k)
(k1 − k)2(k3 − k)2

}
. (B.16)

The final inclusive cross-section I(Z) from the vertex
Z is

I(Z) = 2I
(Z)
1 + 2I

(Z)
2 + I

(Z)
5 + I

(Z)
6+7. (B.17)
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